Новости

02 апреля 2019
Основы и принципы работы светодиодов

Светодиод – полупроводниковый прибор, излучающий свет определенного цвета. Он кардинально отличается от традиционных источников света, таких как лампы накаливания, люминесцентные лампы и разрядные лампы высокого давления. В светодиоде нет газа и нити накала, он не имеет хрупкой стеклянной колбы и потенциально ненадежных подвижных деталей.

Краткая история создания светодиодов
Светодиоды, или светоизлучающие диоды, являются электрическими источниками света. Первый красный светодиод был создан в 1962 г. Ником Холоньяком (Nick Holonyak) в компании General Electric. Монохромные красные светодиоды в 60-е гг. прошлого столетия применялись для производства небольших световых индикаторов, используемых в электронных приборах. Хотя они испускали тусклый свет и имели низкую энергоэффективность, технология оказалась перспективной и стала быстро развиваться. В начале 70-х гг. появились зеленые и желтые светодиоды. Они использовались в наручных часах, калькуляторах, электронных приборах, в светофорах и указателях «Выход». Эффективность светодио- дов по световому потоку постоянно увеличивалась, и к 1990 г. световой поток красных, желтых и зеленых светодиодов достиг значения 1 люмен (лм).
В 1993 г. Суджи Накамура (Shuji Nakamura), инженер, работающий в компании Nichia, создал первый синий светодиод высокой яркости. Так как красный, синий и зеленый являются тремя главными составляющими света, теперь с помощью светодиодов можно было получить любой цвет освещения, включая белый. Белые люминофорные светодиоды – это светодиоды, объединяющие синий или ультрафиолетовый светодиод с люминофорным покрытием, впервые появились в 1996 г. В конце 90-х гг. светодиоды постепенно заменяют лампы накаливания там, где требуется окрашенный свет.
В 2000–2005 гг. уровень светового потока светодиодов достиг значения 100 лм и выше. Появились белые светодиоды с теплыми и холодными оттенками, подобными образуемым лампами накаливания, люминесцентными лампами и схожие с естественным освещением. Постепенно светодиоды составили конкуренцию традиционным источникам света и стали применяться в театральном и сценическом освещении.
В настоящее время светодиоды широко используются в различных системах общего освещения. По мнению Департамента энергетики (Department of Energy) и Ассоциации развития оптоэлектронной промышленности (Optoelectronics Industry Development Association), к 2025 г. светодиоды станут самым распространенным источником света в жилых домах и офисах.

Как работает светодиод
Как и любой диод, светодиод включает в себя один полупроводниковый p-n-переход (электронно-дырочный переход). С помощью процесса, носящего название легирование, материал n-типа обогащается отрицательными носителями заряда, а материал р-типа – положительными носителями заряда. Атомы в материале n-типа приобретают дополнительные электроны, а атомы в материале р-типа приобретают дырки – места на внешних электронных орбитах атомов, в которых отсутствуют электроны.
При приложении к диоду электрического поля электроны и дырки в материалах p- и n-типа устремляются к p-n-переходу. Когда носители заряда подходят к p-n-переходу, электроны инжектируются в материал р-типа. При подаче отрицательного напряжения со стороны материала n-типа через диод протекает электрический ток в направлении от материала n-типа в материал р-типа. Это называется прямым смещением.

Когда избыточные электроны переходят из материала n-типа в материал р-типа и рекомбинируют с дырками, происходит выделение энергии в виде фотонов, элементарных частиц (квантов) электромагнитного излучения. Все диоды испускают фотоны, но не все диоды испускают видимый свет.
Материал, из которого изготавливается светодиод, выбирается таким образом, чтобы длина волны испускаемых фотонов находилась в пределах видимой области спектра излучения. Разные материалы испускают фотоны с разными длинами волн, что соответствует разным цветам испускаемого света.

Пучок видимого света, испускаемого светодиодом, является холодным, но так как в светодиодах имеются потери, то на p-n-переходе генерируется тепло, иногда достаточно большое. Ограничение температуры p-n-перехода с помощью правильно сконструированного теплоотвода и других методов контроля температуры является критичным для обеспечения нормальной работы светодиода, оптимизации егосветового потока и повышения срока службы.

«Анатомия» светодиодов
Существует два основных типа светодиодов: индикаторные и осветительные. Индикаторные светодиоды, например, 5-миллиметровые, обычно являются недорогими, маломощными источниками света, пригодными для использования только в качестве световых индикаторов в индикаторных панелях и электронных приборах, для подсветки дисплеев компьютеров или приборных панелей автомобиля. Осветительные светодиоды, представленные светодиодами поверхностного монтажа (SMD), высокой яркости (HB) и высокой мощности (HP) – это надежные мощные устройства, способные обеспечить нужный уровень освещенности и обладающие световым потоком, равным или превосходящим световой поток традиционных источников света, например, КЛЛ.

Все осветительные светодиоды имеют одинаковую базовую конструкцию. Они включают в себя полупроводниковый чип (или кристалл), подложку, на которую он устанавливается, контакты для электрического подключения, соединительные проводники для подсоединения контактов к кристаллу, теплоотвод, линзу и корпус. (В некоторых светодиодах, например, в светодиодах TFFC, разработанных компанией Philips Lumileds, соединительные проводники не требуются.)
Так как индикаторные светодиоды являются маломощными, все генерируемое в них тепло рассеивается внутри самих светодиодов. Осветительные светодиоды, напротив, снабжаются корпусом для прямого припаивания к поверхности, что обеспечивает отвод тепла, генерируемого светодиодом. Хороший теплоотвод жизненно важен для обеспечения температурного режима и нормальной работы светодиода.

Как с помощью светодиодов получают разные цвета
Светодиоды, изготовленные из разных полупроводниковых материалов, излучают свет разных цветов. Разные материалы испускают фотоны с разными длинами волн, что соответствует разным цветам видимого света.
В первых светодиодах использовались такие материалы, как фосфид галлия (GaP), тройное соединение AIGaAs и тройное соединение GaAsP. Они создавали излучение от красного до желто-зеленого цвета. В настоящее время GaP, AIGaAs и GaAsP используются только для изготовления индикаторных светодиодов, так как большие токи, необходимые для получения излучения, и большое тепло, выделяющееся при работе светодиодов, изготовленных из этих материалов, значительно сокращают срок их службы.

Для производства осветительных светодиодов используются новые материалы, способные выдерживать необходимые уровни тока, высокий нагрев и высокую влажность. В красных и янтарных светодиодах высокой яркости применяются полупроводники алюминий индий – галлий (AllnGaP), в синих, зеленых и голубых – индий – нитрид галлия (InGaN).
Светодиоды, изготовленные из AllnGaP и InGaN, в совокупности перекрывают почти всю область спектра видимого излучения с промежутком в области зелено - желтого и желтого цветов. Корпоративные цвета с применением желтого (например, Shell или McDonald’s) трудно получить с помощью одноцветных светодиодов.
Одним из способов получения «сложных» цветов является совместное использование в одном осветительном приборе светодиодов разных типов.

Основные материалы для производства монохромных светодиодов. AllnGaP и InGaN покрывают почти весь спектр видимого излучения для светодиодов высокой интенсивности, кроме желто-зеленой и желтой областей спектра с длиной волны 550–585 нанометров (нм). Цвета, соответствующие этому диапазону длин волн, могут быть получены с помощью совместного использования зеленых и красных светодиодов.

Миллионы цветовых оттенков
Производители светодиодов обычно предлагают светодиоды различных цветов – синий, голубой, зеленый, янтарный, красно-оранжевый, красный и т. д. Самостоятельно светодиод может излучать свет только одного цвета, который определяется используемым в нем полупроводниковым материалом. Настоящее волшебство начинается тогда, когда в одном приборе объединяются светодиоды разного цвета.
Именно объединение светодиодов разного цвета в одном световом приборе, таком как светильник или многокристальный светодиод, и управление интенсивностью излучения светодиодов разного цвета и обеспечивает получение миллионов оттенков. Подобно телевизионному экрану или компьютерному монитору, полноцветный светодиодный прибор реализует цветовую модель RGB (R – красный, G – зеленый, B – синий). Цветовая модель RGB – это модель аддитивного смешения цветов, которая применяется для света, непосредственно излучаемого его источниками. (Модель субтрактивного смешения цветов применяется к отражающим поверхностям, таким как поверхности, покрытые красками или чернилами.)
На диаграмме показано цветовое пространство МКО 1931, разработанное в 1931 г. Международной комиссией по освещению (МКО) для определения всего диапазона, или гаммы цветов, видимых стандартным наблюдателем. Ни одно из устройств – телевизионный экран, монитор компьютера, светодиодный световой прибор и другие трехцветные устройства – не может воспроизвести все цвета, различимые глазом человека. Гамма цветов, которую можно получить с помощью светодиодного светового прибора или многокристального светодиода, зависит от цветов отдельных красных, зеленых и синих светодиодов, используемых в них.

На диаграмме точки трех цветов отдельных светодиодов, используемых в трехцветном световом приборе, соответствуют вершинам треугольника. Теоретически прибор может воспроизвести любой цвет, соответствующей точкам внутри этого треугольника. На практике трехцветный светодиодный световой прибор обычно управляется цифровым контроллером и может воспроизвести определенное количество возможных цветов внутри треугольника. С помощью 8-битного трехцветного светодиодного прибора можно получить приблизительно 16,7 млн цветов (2563 цветов) – однако это количество уже превышает число цветов, которые человек способен различить в пределах данного цветового треугольника. (Цвета, лежащие вне границ цветового треугольника, могут быть различимы глазом человека, но световой прибор не сможет их воспроизвести.)
Способность полноцветных светодиодных световых приборов излучать свет любого цвета без использования светофильтров и других внешних устройств в корне отличает светодиоды от других источников света. Совместное использование полноцветных светодиодных источников света с контроллерами освещения позволяет создавать как простые цветовые эффекты, так и полноцветные световые шоу и даже крупномасштабные видео дисплеи.

Создание белого света с помощью светодиодов
Существует два способа получения белого света с помощью светодиодов:
- Согласно цветовой модели RGB, белый цвет получается с помощью пропорционального смешивания красного, зеленого и синего цветов. При использовании метода RGB белый свет получается при объединении излучения красного, зеленого и синего светодиодов.
- Люминофорные технологии получения белого света предполагают использование одного светодиода коротко-волнового излучения, например, синего или ультрафиолетового, в комбинации с желтым люминофорным покрытием. Фотоны синего или ультрафиолетового излучения, генерируемые светодиодом, либо проходят через слой люминофора без изменения, либо преобразуются в нем в фотоны желтого света. Комбинация фотонов синего и желтого цвета создает белый свет.

Метод RGB дает возможность создавать белый свет точного оттенка, имеющий способность подчеркивать освещаемые цвета. Однако для создания белого цвета RGB требуется сравнительно сложное оборудование, так как в одном источнике необходимо использовать сразу три светодиода. При этом получаемый свет неестественно передает пастельные тона, что является основным следствием низкого индекса цветопередачи белого света, полученного методом RGB.
Белые люминофорные светодиоды обе спечивают лучшую цветопередачу, чем белые RGB -светодиоды, в большинстве случаев сравнимую с люминесцентными источниками света. От белых RGB -источников света они также отличаются высокой энергоэффективностью. Именно высокая энергоэффективность и хорошая цветопередача делают люминофорные технологии предпочтительным способом получения белого света.
В процессе производства белых светодиодов на светодиодный кристалл наносится слой люминофора. Оттенок или цветовая температура белого света, излучаемого светодиодом, определяется длиной волны света, испускаемого синим светодиодом и составом люминофора.
Цветовая температура излучения светодиода зависит от толщины слоя люминофора. Производители стараются минимизировать цветовые вариации с помощью строгого контроля толщины и состава слоя люминофора. Компания Philips Lumileds использует защищенный патентом процесс изготовления светодиодов Philips LUXEON, излучающих холодный и нейтральный белый свет с высоким постоянством цвета.
В настраиваемых световых приборах, позволяющих получать белый свет из определенного диапазона цветовых температур, используется принцип смешивания трех цветов. Эти приборы обычно содержат светодиоды холодного и теплого белого света, индивидуально управляемые по принципу, применяемому в полноцветных источниках света RGB. Регулирование относительной интенсивности холодного и теплого белого света изменяет цветовую температуру настраиваемого светового прибора по тому же принципу, как регулируется интенсивность излучения красных, зеленых и синих светодиодов полноцветного (RGB).

Устройство светодиодных световых приборов
Для использования в целях освещения светодиоды должны быть объединены в систему, включающую оптику, драйверы, источники питания и теплоотводы. Все названные компоненты присутствуют в световом приборе.мПроектировщикам и инсталляторам светодиодных систем освещения, вероятно, никогда не придется вскрывать корпуса световых приборов, подобно тому, как пользователю персонального компьютера нет необходимости открывать системный блок ПК и разбирать его содержимое. В некоторых световых приборах, предназначенных для театрального освещения, предусмотрены замена и ремонт компонентов на месте установки, но в большинстве случаев разбирать светодиодные приборы не рекомендуется: это не одобряется производителями и может привести к аннулированию гарантии. К счастью, светодиодные световые приборы и их компоненты очень редко выходят из строя. Как правило, производители самостоятельно ремонтируют или заменяют вышедшую из строя светодиодную осветительную арматуру в соответствии с гарантийными обязательствами или на основании других соглашений.

Тем не менее знать, что находится внутри «черного ящика», все же весьма полезно. К основным компонентам светодиодного светового прибора относятся:
- Собственно сами светодиоды и электроника, обеспечивающая их работу.
- Источник питания с микропроцессорным управлением, преобразователи напряжения и схемы управления.
- Устройства для отвода тепла (вентиляционные отверстия и радиаторы).
- Линзы и средства нацеливания для направления, смешивания и рассеивания света.

Светодиодный световой прибор представляет собой систему, состоящую из светодиодов, источников питания и преобразователей напряжения, драйверов светодиодов, цепей контроля и управления, устройств для отвода тепла, а также линз и других оптических устройств для смешивания, рассеивания и выведения света.

Дополнительно светодиодные световые приборы обычно включают постоянно подсоединенные или отсоединяемые кабели для подключения к источнику питания. Линейные светильники, например, осветительные приборы для световых карнизов и рабочего освещения, обычно снабжены стыковочными разъемами, кабельными перемычками и другими устройствами для установки приборов с различными интервалами и в различной конфигурации.

Литература:
1. Журнал ЭНЕРГЕТИКА , №4 (35), ноябрь 2010г.
2. Вейнерт Д., Сполдинг Ч. Светодиодное освещение. Справочник. Принципы работы, преимущества и области применения// компания Philips Color Kinetics, 2010.

Деградация светодиодов – основные причины

View more
11 апреля 2019
Деградация светодиодов – основные причины
В последнее время все большую популярность приобретают светодиодные лампы
Архитектурно-художественное освещение

View more
11 апреля 2019
Архитектурно-художественное освещение
Истоки иллюминации архитектурных форм уводят нас в ветхозаветную древность
Управление светом с помощью протокола DMX 512

View more
03 апреля 2019
Управление светом с помощью протокола DMX 512
Применение светодиодных приборов, дает широкие возможности для реализации сложных задач освещения
Бизнес и светодиоды

View more
03 апреля 2019
Бизнес и светодиоды
Внимание мировой общественности направлено на такие важные темы, как устойчивое развитие, защита окружающей среды и минимизация вредного воздействия жизнедеятельности человека на экологию
Работаем по всей России
Закрыть
Вы на сайте уже 2 минуты!
Мы можем перезвонить вам в течении 10 минут или вы можете продолжить прогулку по сайту
*По статистике, освещение привлекает до 30% потенциальных покупателей к объектам освещеннм ягнятами
Закрыть
Вы на сайте уже 2 минуты!
Мы можем перезвонить вам в течении 10 минут или вы можете продолжить прогулку по сайту
*По статистике, освещение привлекает до 30% потенциальных покупателей к объектам освещеннм ягнятами